大类学科: 不限 医学 生物 物理 化学 农林科学 数学 地学天文 地学 环境科学与生态学 综合性期刊 管理科学 社会科学 查看全部热门领域

中科院分区: 不限 1区 2区 3区 4区

期刊收录: 不限 SCI SCIE

Machine Learning-Science and Technology

Machine Learning-Science and Technology

简称: MACH LEARN-SCI TECHN
ISSN:2632-2153
学科方向:Multiple
最新分区:去查询
全学科期刊推荐 中英文发表指导

* 稍后学术顾问联系您

学术顾问回访> 详细沟通需求> 确定服务项目> 支付服务金> 完成服务内容

Machine Learning-Science and Technology杂志英文简介

Machine Learning: Science and Technology? is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories:


i) advance the state of machine learning-driven applications in the sciences,

or

ii) make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.

Particular areas of scientific application include (but are not limited to):
? Physics and space science

? Design and discovery of novel materials and molecules

? Materials characterisation techniques

? Simulation of materials, chemical processes and biological systems

? Atomistic and coarse-grained simulation

? Quantum computing

? Biology, medicine and biomedical imaging

? Geoscience (including natural disaster prediction) and climatology

? Particle Physics

? Simulation methods and high-performance computing


Conceptual or methodological advances in machine learning methods include those in (but are not limited to):
? Explainability, causality and robustness

? New (physics inspired) learning algorithms

? Neural network architectures

? Kernel methods

? Bayesian and other probabilistic methods

? Supervised, unsupervised and generative methods

? Novel computing architectures

? Codes and datasets

? Benchmark studies

IF值(影响因子)趋势图

点击咨询 点击咨询
2023最新分区查询