符合学术规范的学术服务

基于生态位因子模型的湖北省松材线虫病风险评估

分类:农业论文 时间:2021-04-07

  摘要:【目的】当前湖北省松材线虫Bursaphelenchusxylophilus疫情形势严峻。通过研究湖北省松材线虫病的入侵风险,分析松材线虫病在湖北省的危害程度,为当前疫情的防治工作提供建议和参考。【方法】结合“3S”技术,应用生态位因子模型(ENFA),选取影响松材线虫定殖和传播的4类影响因素(气候、植被、地形、人类活动),对松材线虫病在湖北的入侵风险进行了预测和评价。【结果】湖北省松材线虫病高风险区面积38884.62km2,占湖北省总面积的20.92%,高风险区主要集中于海拔较低,人类活动频繁的的中部和东部地区,中风险区面积66501.84km2,占总面积的35.77%,低风险区面积80513.54km2,占总面积的43.31%,中低风险地区主要分布在林地稀少的江汉平原和西部的高海拔山地。松材线虫偏好分布在温度较高,降水丰富,海拔较低,离人类居住点较近且人类活动频繁的针叶林地区。通过交叉验证(cross-validation)对模型的预测进行检验,得到P/E曲线,曲线呈单调递增且Boyce指数很高,说明模型精度很高。

基于生态位因子模型的湖北省松材线虫病风险评估

  【结论】ENFA模型能很好模拟松材线虫病的风险区域,模型结果可为湖北省各县市的松材线虫病防治决策提供参考。图2表3参25关键词:森林保护学;松材线虫;生态位因子模型;风险评估

  松材线虫Bursaphelenchusxylophilus是危害性极高的外来有害生物,也是中国林业检疫性有害生物[1]。它主要通过松墨天牛Monochamusalternatus等媒介昆虫在松树体内传播,引发破坏性极强的松材线虫病[2]。自1982年在南京中山陵首次发现被松材线虫感染的黑松Pinusthunbergia以来,松材线虫病已经给中国造成直接和间接损失上千亿元[3]。截至2020年4月,松材线虫病已扩散至湖北省的86个市县地区,湖北省的林业生态安全面临着巨大的威胁[4]。运用生态位模型对外来有害生物的适宜生境和风险进行评估是当前研究热点之一[5−6],比较广泛的生态位模型有BIOCLIM、GARP、GLM、MAXENT、ENFA等,这些模型都建立在HUTCHINSON[7]生态位原理的基础上,即将物种的分布视为与环境因素异质性密切相关的因变量,通过计算物种点的环境因素变量来确定物种的生态位,然后利用物种的生态位模拟研究该物种在研究区域内的分布适宜性。生态位因子分析(ecological-nichefactoranalysis,ENFA)模型的优点在于模型计算只需要已出现的物种点数据,而不需要非出现点的数据[8]。并且相较于其他生态位模型,ENFA模型结果还包括各指标因子与物种的相关关系,可对物种的生态位直接进行解释。ENFA模型已成功模拟了大熊猫Ailuropodamelanoleuca[8]和亚洲象Elephasmaximus的适宜生境[9]、人象冲突的风险评估[10]、蝴蝶Rhopalocera的异地适生区[11]、蕨类Pteridophyta植物的空间分布预测[12]、林麝Moschusberezovskii的生境预测[13]、欧洲松鸡Tetraourogallus的保护[14]等。本研究结合“3S”技术,应用ENFA模型,对湖北省松材线虫病的潜在风险区进行评估,研究影响湖北省松材线虫定殖和传播的主要影响因子,分析风险区的面积大小和分布状况,以期为湖北省松材线虫病的防治提供科学依据。

  1数据来源与研究方法

  1.1数据来源

  物种分布点数据来源于国家林业和草原局公告(2020年第4号)[15],共得到松材线虫病在湖北省(29°01′53″~33°06′47″N,108°21′42″~116°07′50″E)的分布点数据86条(图1)。数据包括:①气候数据。主要为2008−2017年湖北省34个气象站点的数据,来源于国家气象科学数据共享服务平台(http://data.cma.cn)。②地形数据。主要为湖北省的数字高程模型(DEM)数据(2009年),来自于地理空间数据云(http://www.gscloud.cn)。③人类活动干扰数据。包括道路数据(2015年)、土地利用/覆盖变化数据(2015年)、人口分布密度数据(2015年),均来源于中国科学院资源环境科学数据中心(http://www.resdc.cn)。④植被因素。主要包括植被覆盖类型(2015年)和归一化植被指数(NDVI)数据(2017年),来源于中国科学院资源环境科学数据中心(http://www.resdc.cn)。

  1.2生态位因子分析模型(ENFA)

  ENFA模型是研究物种分布的多变量分析方法[16]。该模型采用主成分分析方法,利用物种分布点的数据和生态地理变量(EGV)数据,将物种的生态位和生态幅度与整个研究区的环境因子平均状态和标准差相比较,从EGV中提取主要信息组合为互不相关的特征矩阵,特征矩阵和特征向量用来生成生境适宜性图[17]。物种的分布与EVG之间的相互关系通过计算边际性、特殊性和耐受性3个指标得到[18]。边际性系数(M)为物种分布区EGV平均值和整个研究区内EGV平均值的差异。M>0时,表明该物种偏好EGV平均水平以上的环境;M<0时,表明物种偏好EGV平均水平以下的环境。M的绝对值越大,物种对EGV的偏好程度越高,物种的分布也越不随机。

  1.3ENFA模型指标体系

  松材线虫病的定殖和传播是一个复杂的病害系统。温度、降水量、日照等气候条件影响松材线虫及其寄主松墨天牛的生存和定殖[19];林分状况、树龄、树种的丰富度、森林郁闭度等因子影响着媒介昆虫松墨天牛的种群密度[20];海拔、坡度和坡向等地形因子通过影响气候和土壤从而间接影响植物的生长和分布;松墨天牛的自然扩散能力不强[2],因此松材线虫主要借助人为传播,人类活动直接影响松材线虫病扩散的速度和规模。本研究从气候、植被、地形、人类活动干扰等4个影响因素中选取15个EGV指标,用于松材线虫病潜在风险区的评估(表1)。

  1.4数据处理

  所有生态地理变量数据均预先在ArcGIS10.2中进行处理。气候数据进行克里金(Kriging)插值处理,地形数据从DEM提取,植被和人类活动干扰数据需转换为距离数据或者频率数据[19],植被覆盖度利用像元二分模型计算NDVI得到[21]。所有数据转换为250m×250m空间分辨率和相同的投影,并将ArcGIS栅格数据转换为ENFA所能使用的栅格数据格式,然后利用ENFA对数据进行Box-Cox标准化后进行分析。

  2结果与分析

  2.1ENFA模型结果

  通过ENFA模型得到边际性系数M=1.639,M>1,说明松材线虫对各种环境条件的选择不是随机的。特殊性系数S=8.822,耐受性系数T=0.113,S较大,T小,说明松材线虫的定殖和传播是受特定环境条件影响,在环境条件适宜的情况下入侵风险较高。

  相关期刊推荐:《浙江农林大学学报》是中国林业类和综合性农业科学类核心期刊之一,主要报道林学基础学科、森林培育学、森林经理学、经济林学、林业工程、森林保护学、林木遗传育种学、森林生物学、生态学、生物技术、园林学和园艺学等学科的学术论文、问题讨论和研究简报,适当刊登与农林相关的其他学科的稿件。

  从表2可知:第1列为边际因子,特殊性解释比例为98.00%,其他为特殊因子,包括特异因子1和特异因子2,解释比例分别为1.11%、0.49%,3个因子的累积贡献率达99.60%,即解释了100%的边际性和99.60%的特殊性,由这3个因子生成最终的风险等级图。用交叉验证对模型的预测进行检验,得到呈单调递增趋势的P/E曲线,Boyce平均值为0.90,标准差为0.20,说明模型预测能力很好。根据P/E曲线将湖北省松材线虫病风险区分为3个等级:低风险区(01165mm),5−10月气温较高(平均气温>23.77℃),5−10月降水量较多(平均降水量>151.94mm)的地区。在地形上趋向于低海拔(平均海拔425m)、坡度平缓(平均坡度7°)并位于西坡和南坡的地区。在各种人类活动影响下,松材线虫选择分布在距离人类居民点(平均距离9077m)和铁路(平均距离18356.20m)较近,人口密度较大(平均253.68人·km−2),农田(平均距离789.52m)比较密集的地区,远离公路(平均距离2304.65m)和河流(平均距离8762.43m)。在植被因素的选择上,松材线虫病主要发生在植被覆盖度较低(平均覆盖度0.42)的针叶林(平均距离9133m)内。

  2.3松材线虫的潜在风险区分析

  利用ArcGIS10.2对湖北省松材线虫的入侵风险等级区域进行计算,发现湖北省松材线虫病高风险区面积38884.62km2,占湖北省总面积的20.92%,中风险区面积66501.84km2,占总面积的35.77%,低风险区面积80513.54km2,占总面积的43.31%(表3)。

  湖北省松材线虫病入侵风险较高的地区主要有:荆门市东部和中西部大部分地区;荆州市的西南部和南部地区;宜昌市的东部和中部地区;天门市的北部地区;襄樊市的东北部和中部大部分地区;孝感市的北部大部分地区;黄冈市的东南部和北部的大部分地区;黄石市的东部和中部大部分地区;咸宁市的大部分地区;十堰市的中部地区;恩施市的中部和东北部的少部分地区;随州市的东部和中部地区;武汉市的西北部。这些地区基本都是海拔较低的山地和平原地区,森林覆盖率高,人类活动频繁,导致松材线虫入侵的风险也相对较高。

  中风险区和低风险区主要分布在江汉平原的大部分地区和西部的高海拔山地,主要包括鄂州市、仙桃市、潜江市、天门市、武汉市的大部分地区、荆州市的东部和中部大部分地区、黄冈市东南部的小部分地区、宜昌市的南部和西部大部分地区、恩施州的大部分地区、襄樊市的西部大部分地区和十堰市的西南部大部分地区以及与之接壤的神农架林区。江汉平原地势平坦,人口密集,但森林很少,大部分低风险区则分布于此;湖北省西部大部分地区都是海拔较高的山地,特别是神农架林区的平均海拔就有1700m,一部分低风险区就位于这些海拔很高的地区;西部地区人类活动较少,但一些低海拔地区仍然有森林覆盖,因此有大部分中度风险区分布于此。

  3结论与讨论

  较前人研究[5−6,22],本研究在模型指标因子的选择上更加全面,不局限于气候因素,因此模型结果可以更好地了解松材线虫病在湖北省的传播规律。模型通过交叉验证,Boyce平均值为0.90,标准差为0.20,很好地模拟了湖北省松材线虫病的潜在风险区域。

  本研究表明:年均气温、年降水量、夏季气温及降水均是影响松材线虫定殖的主要气候因素。湖北省适宜的气候给松材线虫及其寄主松墨天牛提供了良好的生存环境。地形因子的边际性系数表明:松材线虫喜欢分布于海拔较低,坡度平缓,并位于西坡和南坡的地区,因此松材线虫病普遍发生于海拔低于700m的地区。植被因子的边际性系数表明:松材线虫偏好于植被覆盖度较低的针叶林。人口密度、居民点、铁路和农田是影响松材线虫病在湖北省内传播的几个主要人为因素。

  根据模型预测结果,湖北省松材线虫病入侵风险较高的区域广泛分布于湖北省的12个地级市,部分地区已经暴发了比较严重的松材线虫病,这些区域都是海拔较低的山地或者平原,气候适宜,人类活动频繁,松材线虫入侵的风险特别高。因此在风险较高的地区必须加强松材线虫病的防范和治理力度。首先,必须加大高风险区内针叶林的疫情监测力度,在夏季运用遥感和无人机监测等相关技术,实现松材线虫病疫情的大面积监测;其次,针对已经感染松材线虫病的林区,可采取目前较为成熟的生物防治、引诱剂和化学防治来降低媒介昆虫的虫口数量,从而减小松材线虫病疫区的范围;松材线虫病防治最重要的环节就是染病松木的处理,松材线虫病疫区必须彻底清理染病濒死和枯死的松木,在受灾程度严重的地区则应建立疫木集中处理场地,对砍伐的疫木进行集中处理[23];同时,政府和相关部门也要做好与松材线虫病害相关的宣传和管理工作,严格控制松木及其加工制品的流通,防止松材线虫借助松木制品再次扩散到其他地区[24]。

  中风险区和高风险区相邻,大部分针叶林也都分布在中风险地区,因此在这些地区主要做好松材线虫病的监测和检疫工作,对于新发病的地区要及时处理疫木,砍伐的疫木尽快就地焚烧或粉碎处理。

  低风险区主要分布在江汉平原中部和西北部的山区和神农架林区。江汉平原中部地势平缓,气候适宜,但是松材线虫的寄主植物松树却很少,西北部山区和神农架林区海拔较高,大部分松林都分布于人迹罕至的地区,因此感染松材线虫的风险相对较低。但随着城镇的扩张,人类活动的加剧,气候变暖和松材线虫的遗传多样性提高[25],其感染风险也会相对提高,因此也要做好松材线虫病的检疫工作,并对松林进行定期巡查,阻止松材线虫的进一步蔓延。——论文作者:沈鹏,李功权

全学科期刊推荐 中英文发表指导

* 稍后学术顾问联系您

学术顾问回访> 详细沟通需求> 确定服务项目> 支付服务金> 完成服务内容

SCI期刊

国际英文期刊

核心期刊

国外书号出书

国内纸质出书

2023最新分区查询